Difference between revisions of "Edge template IV2k"
From HexWiki
(Created page with "The template: <hexboard size="4x6" coords="hide" contents="E *:a1 E *:b1 E *:c1 E *:d1 E *:e1 R f1 E *:a2 E *:b2 R d2 E *:a3" /> (From Mike Amling, see: [http://...") |
(Converted to new hexboard diagrams) |
||
Line 1: | Line 1: | ||
− | + | Template IV2-k is a 4th row [[edge template]] with 2 stones. | |
<hexboard size="4x6" | <hexboard size="4x6" | ||
coords="hide" | coords="hide" | ||
− | contents="E *:a1 E *:b1 E *:c1 E *:d1 E *:e1 R f1 E *:a2 E *:b2 R d2 E *:a3" | + | edges="bottom" |
+ | visible="-area(a1,a3,c1,e1)" | ||
+ | contents="E *:a1 E *:b1 E *:c1 E *:d1 E *:e1 R ↑:f1 E *:a2 E *:b2 R d2 E *:a3" | ||
/> | /> | ||
+ | |||
+ | Red can guarantee to connect the stone marked "↑" to the edge. Red can also guarantee the other stone to be connected to the edge (using the [[ziggurat]] template), but not both stones simultaneously. | ||
(From Mike Amling, see: [http://www.drking.org.uk/hexagons/hex/templates.html www.drking.org.uk]) | (From Mike Amling, see: [http://www.drking.org.uk/hexagons/hex/templates.html www.drking.org.uk]) | ||
+ | |||
+ | == Defending the template == | ||
Red has two threats: | Red has two threats: | ||
Line 12: | Line 18: | ||
<hexboard size="4x6" | <hexboard size="4x6" | ||
coords="hide" | coords="hide" | ||
− | contents="E *:a1 E *:b1 E *:c1 E *:d1 E *:e1 R f1 E *:a2 E *:b2 R d2 E +:e2 E +:f2 E *:a3 R | + | edges="bottom" |
+ | visible="-area(a1,a3,c1,e1)" | ||
+ | contents="E *:a1 E *:b1 E *:c1 E *:d1 E *:e1 R ↑:f1 E *:a2 E *:b2 R d2 E +:e2 E +:f2 E *:a3 R A:e3 E +:d4 E +:e4" | ||
/> | /> | ||
Line 19: | Line 27: | ||
<hexboard size="4x6" | <hexboard size="4x6" | ||
coords="hide" | coords="hide" | ||
− | contents="E *:a1 E *:b1 E *:c1 E *:d1 E *:e1 R f1 E *:a2 E *:b2 E +:c2 R d2 R | + | edges="bottom" |
+ | visible="-area(a1,a3,c1,e1)" | ||
+ | contents="E *:a1 E *:b1 E *:c1 E *:d1 E *:e1 R ↑:f1 E *:a2 E *:b2 E +:c2 R d2 R B:e2 E *:a3 E +:b3 E +:c3 E +:d3 E +:a4 E +:b4 E +:c4 E +:d4" | ||
/> | /> | ||
using the [[ziggurat]]. | using the [[ziggurat]]. | ||
− | For a blocking attempt Blue has to play on one of the overlapping fields: | + | For a blocking attempt, Blue has to play on one of the overlapping fields: |
− | + | ||
<hexboard size="4x6" | <hexboard size="4x6" | ||
− | contents="E *:a1 E *:b1 E *:c1 E *:d1 E *:e1 R f1 E *:a2 E *:b2 R d2 E | + | coords="hide" |
+ | edges="bottom" | ||
+ | visible="-area(a1,a3,c1,e1)" | ||
+ | contents="E *:a1 E *:b1 E *:c1 E *:d1 E *:e1 R ↑:f1 E *:a2 E *:b2 R d2 E x:e2 E *:a3 E y:d4" | ||
/> | /> | ||
− | + | If Blue moves at x: | |
<hexboard size="4x6" | <hexboard size="4x6" | ||
coords="hide" | coords="hide" | ||
− | contents="E *:a1 E *:b1 E *:c1 E *:d1 E *:e1 R f1 E *:a2 E *:b2 R d2 B 1:e2 R 2:f2 E *:a3 R 6:d3 R 4:e3 B 5:d4 B 3:e4" | + | edges="bottom" |
+ | visible="-area(a1,a3,c1,e1)" | ||
+ | contents="E *:a1 E *:b1 E *:c1 E *:d1 E *:e1 R ↑:f1 E *:a2 E *:b2 R d2 B 1:e2 R 2:f2 E *:a3 R 6:d3 R 4:e3 B 5:d4 B 3:e4" | ||
/> | /> | ||
Red is connected by [[Edge_template_III2b|III-2-b]]. | Red is connected by [[Edge_template_III2b|III-2-b]]. | ||
− | + | If Blue moves at y: | |
<hexboard size="4x6" | <hexboard size="4x6" | ||
coords="hide" | coords="hide" | ||
− | contents="E *:a1 E *:b1 E *:c1 E *:d1 E *:e1 R f1 E *:a2 E *:b2 R d2 E *:a3 R 4:d3 R 2:e3 B 1:d4 B 3:e4" | + | edges="bottom" |
+ | visible="-area(a1,a3,c1,e1)" | ||
+ | contents="E *:a1 E *:b1 E *:c1 E *:d1 E *:e1 R ↑:f1 E *:a2 E *:b2 R d2 E *:a3 R 4:d3 R 2:e3 B 1:d4 B 3:e4" | ||
/> | /> | ||
Latest revision as of 17:52, 10 December 2020
Template IV2-k is a 4th row edge template with 2 stones.
Red can guarantee to connect the stone marked "↑" to the edge. Red can also guarantee the other stone to be connected to the edge (using the ziggurat template), but not both stones simultaneously.
(From Mike Amling, see: www.drking.org.uk)
Defending the template
Red has two threats:
and
using the ziggurat.
For a blocking attempt, Blue has to play on one of the overlapping fields:
If Blue moves at x:
Red is connected by III-2-b.
If Blue moves at y:
Again Red is connected by III-2-b.