Difference between revisions of "Template VI1/Intrusion on the 4th row"

From HexWiki
Jump to: navigation, search
(Converted to new hexboard diagrams)
(Simplified the analysis by using a ladder creation template)
Line 1: Line 1:
This page is devoted to details on how to [[Defending against intrusions in template VI1|defend against intrusions in template VI]]. This page explores what are the possibilities for Red to defend the template when Blue intrude on the 4th row.
+
This page is devoted to details on how to [[Defending against intrusions in template VI1|defend against intrusions in template VI]]. This page explores Red's possibilities to defend the template when Blue intrudes on the 4th row.
  
 
<hexboard size="7x14"
 
<hexboard size="7x14"
Line 17: Line 17:
 
/>
 
/>
  
== Elimination of irrelevant Blue moves ==
+
Now the shaded area is a [[ladder creation template]], giving Red at least a 3rd row ladder as indicated.
This gives Red several immediate threats:
+
From III1a:
+
  
 
<hexboard size="7x14"
 
<hexboard size="7x14"
Line 25: Line 23:
 
   edges="bottom"
 
   edges="bottom"
 
   visible="area(a7,n7,n5,k2,i2,c5)"
 
   visible="area(a7,n7,n5,k2,i2,c5)"
   contents="R g5 h3 j2 B i4 E +:e7 +:f6 +:f7 +:g4 +:g6 +:g7 +:h4 +:h5 +:h6 +:h7"
+
   contents="R h3 j2 B i4 E +:k3 S area(h3,g3,e4,c5,a7,h7) E arrow(3):(h5 h6 h7)"
 
/>
 
/>
  
From III1a again:
+
Red can escape both 2nd and 3rd row ladders using a [[ladder escape fork]] via "+". Specifically, Red escapes a third row ladder like this, and is connected by a [[ziggurat]] and double threat at "+":
  
 
<hexboard size="7x14"
 
<hexboard size="7x14"
Line 34: Line 32:
 
   edges="bottom"
 
   edges="bottom"
 
   visible="area(a7,n7,n5,k2,i2,c5)"
 
   visible="area(a7,n7,n5,k2,i2,c5)"
   contents="R g5 h3 j2 B i4 E +:d7 +:e6 +:e7 +:f5 +:f6 +:f7 +:g4 +:g6 +:g7 +:h4"
+
   contents="R h3 j2 B i4 E +:k3 S area(h3,g3,e4,c5,a7,h7) R 1:h5 B 2:h6 R 3:j5 E +:i5"
 
/>
 
/>
  
From III1b :
+
If Blue [[ladder handling|yields]], or Red starts out with a 2nd row ladder, the escape fork works anyway:
  
 
<hexboard size="7x14"
 
<hexboard size="7x14"
Line 43: Line 41:
 
   edges="bottom"
 
   edges="bottom"
 
   visible="area(a7,n7,n5,k2,i2,c5)"
 
   visible="area(a7,n7,n5,k2,i2,c5)"
   contents="R g5 h3 j2 B i4 E +:d7 +:e6 +:e7 +:f5 +:f6 +:g4 +:g6 +:g7 +:h4 +:h5 +:h6 +:h7"
+
   contents="R h3 j2 B i4 E +:k3 S area(h3,g3,e4,c5,a7,h7) R 1:h5 B 2:h7 R 3:h6 B 4:g7 R 5:j6 B 6:i6 R 7:j5 E +:i5"
/>
+
 
+
From IV1a:
+
 
+
<hexboard size="7x14"
+
  coords="none"
+
  edges="bottom"
+
  visible="area(a7,n7,n5,k2,i2,c5)"
+
  contents="R g4 h3 j2 B i4 E +:b7 +:c6 +:c7 +:d5 +:d6 +:d7 +:e5 +:e6 +:e7 +:f4 +:f5 +:f6 +:f7 +:g5 +:g6 +:g7 +:h5 +:h6 +:h7"
+
/>
+
 
+
From IV1b:
+
 
+
<hexboard size="7x14"
+
  coords="none"
+
  edges="bottom"
+
  visible="area(a7,n7,n5,k2,i2,c5)"
+
  contents="R g4 h3 j2 B i4 E +:b7 +:c6 +:c7 +:d5 +:d6 +:d7 +:e5 +:e6 +:e7 +:f4 +:f5 +:f7 +:g5 +:g6 +:g7 +:h4 +:h5 +:h6 +:h7 +:i5 +:i6 +:i7"
+
/>
+
 
+
The intersection of all of these leaves:
+
 
+
<hexboard size="7x14"
+
  coords="full bottom right"
+
  edges="bottom"
+
  visible="area(a7,n7,n5,k2,i2,c5)"
+
  contents="R h3 j2 B i4 E +:e7 +:g4 +:g5 +:g6 +:g7"
+
/>
+
 
+
== Specific defense ==
+
So we must deal with each of these responses.  (Which will not be too hard!)
+
 
+
=== Bg4 ===
+
 
+
<hexboard size="7x14"
+
  coords="none"
+
  edges="bottom"
+
  visible="area(a7,n7,n5,k2,i2,c5)"
+
  contents="R h3 2:h4 4:h5 j2 B 1:g4 3:g6 i4"
+
/>
+
And now either
+
 
+
<hexboard size="7x14"
+
  coords="none"
+
  edges="bottom"
+
  visible="area(a7,n7,n5,k2,i2,c5)"
+
  contents="R h3 h4 h5 j2 2:j5 B g4 g6 1:h6 i4 E +:i5 +:k3"
+
/>
+
 
+
or
+
 
+
<hexboard size="7x14"
+
  coords="none"
+
  edges="bottom"
+
  visible="area(a7,n7,n5,k2,i2,c5)"
+
  contents="R h3 h4 h5 2:h6 j2 6:j5 4:j6 B g4 g6 3:g7 1:h7 i4 5:i6 E +:i5 +:k3"
+
/>
+
 
+
=== Bg5 ===
+
 
+
<hexboard size="7x14"
+
  coords="full bottom right"
+
  edges="bottom"
+
  visible="area(a7,n7,n5,k2,i2,c5)"
+
  contents="R 2:f4 h3 j2 B 1:g5 i4"
+
/>
+
Threatening:
+
 
+
<hexboard size="7x14"
+
  coords="full bottom right"
+
  edges="bottom"
+
  visible="area(a7,n7,n5,k2,i2,c5)"
+
  contents="R 4:d5 f4 h3 j2 B g5 i4 E +:a7 +:b6 +:b7 +:c5 +:c6 +:c7 +:d6 +:d7 +:e4 +:e5"
+
/>
+
 
+
<hexboard size="7x14"
+
  coords="full bottom right"
+
  edges="bottom"
+
  visible="area(a7,n7,n5,k2,i2,c5)"
+
  contents="R 4:e6 f4 h3 j2 B g5 i4 E +:d7 +:e5 +:e7 +:f5"
+
/>
+
 
+
<hexboard size="7x14"
+
  coords="full bottom right"
+
  edges="bottom"
+
  visible="area(a7,n7,n5,k2,i2,c5)"
+
  contents="R 4:e5 f4 h3 j2 B g5 i4 E +:b7 +:c6 +:c7 +:d5 +:d6 +:e6 +:e7 +:f5 +:f6 +:f7"
+
/>
+
So the only hope for Blue lies in the intersection of the threats, Be5, but it is unsufficient:
+
 
+
<hexboard size="7x14"
+
  coords="full bottom right"
+
  edges="bottom"
+
  visible="area(a7,n7,n5,k2,i2,c5)"
+
  contents="R f4 2:f5 4:f6 6:g6 h3 j2 8:j5 B 1:e5 3:e7 5:f7 g5 7:g7 i4 E +:i5 +:k3"
+
/>
+
=== Bg6 ===
+
 
+
<hexboard size="7x14"
+
  coords="none"
+
  edges="bottom"
+
  visible="area(a7,n7,n5,k2,i2,c5)"
+
  contents="R 2:g5 h3 4:h5 j2 B 3:f6 1:g6 i4 E +:e7"
+
/>
+
 
+
3 could be played at + with the same effect; in any case
+
now either
+
 
+
<hexboard size="7x14"
+
  coords="none"
+
  edges="bottom"
+
  visible="area(a7,n7,n5,k2,i2,c5)"
+
  contents="R g5 h3 h5 j2 2:j5 B f6 g6 1:h6 i4 E +:i5 +:k3"
+
/>
+
 
+
or
+
 
+
<hexboard size="7x14"
+
  coords="none"
+
  edges="bottom"
+
  visible="area(a7,n7,n5,k2,i2,c5)"
+
  contents="R g5 h3 h5 2:h6 j2 6:j5 4:j6 B f6 g6 3:g7 1:h7 i4 5:i6 E +:i5 +:k3"
+
/>
+
 
+
=== Be7 ===
+
Either this
+
 
+
<hexboard size="7x14"
+
  coords="none"
+
  edges="bottom"
+
  visible="area(a7,n7,n5,k2,i2,c5)"
+
  contents="R 2:g5 h3 4:h5 j2 6:j5 B 1:e7 3:g6 5:h6 i4 E +:i5 +:k3"
+
/>
+
 
+
or a minor variation
+
 
+
<hexboard size="7x14"
+
  coords="none"
+
  edges="bottom"
+
  visible="area(a7,n7,n5,k2,i2,c5)"
+
  contents="R 2:g5 h3 4:h5 6:h6 j2 10:j5 8:j6 B 1:e7 3:g6 7:g7 5:h7 i4 9:i6 E +:i5 +:k3"
+
/>
+
 
+
=== Bg7 ===
+
 
+
<hexboard size="7x14"
+
  coords="none"
+
  edges="bottom"
+
  visible="area(a7,n7,n5,k2,i2,c5)"
+
  contents="R 2:g5 h3 4:h6 j2 8:j5 6:j6 B 3:f6 1:g7 5:h7 i4 7:i6 E +:i5 +:k3"
+
 
/>
 
/>
  
 
[[category:edge templates]]
 
[[category:edge templates]]

Revision as of 20:25, 29 April 2021

This page is devoted to details on how to defend against intrusions in template VI. This page explores Red's possibilities to defend the template when Blue intrudes on the 4th row.

Red should move here (or the equivalent mirror-image move at "+"):

Now the shaded area is a ladder creation template, giving Red at least a 3rd row ladder as indicated.

Red can escape both 2nd and 3rd row ladders using a ladder escape fork via "+". Specifically, Red escapes a third row ladder like this, and is connected by a ziggurat and double threat at "+":

132

If Blue yields, or Red starts out with a 2nd row ladder, the escape fork works anyway:

1736542