Difference between revisions of "Edge template V1b"

From HexWiki
Jump to: navigation, search
(Fixed the continuations after 2nd row ladder.)
(Handled more cases. Intrusions w and x need more work.)
Line 112: Line 112:
 
<div class="toccolours mw-collapsible  mw-collapsed">
 
<div class="toccolours mw-collapsible  mw-collapsed">
  
Now Red threatens to play at "*":
+
Now Red has two main threats. Via a [[ziggurat]]:
  
 
<hexboard size="6x14"
 
<hexboard size="6x14"
Line 119: Line 119:
 
   visible="area(f1,a6,n6,n4,l2,h1)"
 
   visible="area(f1,a6,n6,n4,l2,h1)"
 
   contents="R e2 d4 d3 B c3 d5 e3 c5 R 1:g3 E *:f4 S f2 g2 f3 e4 area(d6,f4,g4,g6)"
 
   contents="R e2 d4 d3 B c3 d5 e3 c5 R 1:g3 E *:f4 S f2 g2 f3 e4 area(d6,f4,g4,g6)"
 +
  />
 +
And via [[edge template IV2b]]:
 +
<hexboard size="6x14"
 +
  coords="hide"
 +
  edges="bottom"
 +
  visible="area(f1,a6,n6,n4,l2,h1)"
 +
  contents="R e2 d4 d3 B c3 d5 e3 c5 R 1:g3 E *:f4 S f2 g2 f3 e4 area(e6,i6,i4,h3,f4)"
 
   />
 
   />
  
so Blue must play in the shaded area.
+
Blue must play in the overlap:
 +
<hexboard size="6x14"
 +
  coords="hide"
 +
  edges="bottom"
 +
  visible="area(f1,a6,n6,n4,l2,h1)"
 +
  contents="R e2 d4 d3 B c3 d5 e3 c5 R 1:g3 S f2 g2 f3 e4 area(e6,f4,g4,g6)
 +
            E p:f2 q:g2 r:f3 s:e4 t:f4 u:g4 v:f5 w:g5 x:e6 y:f6 z:g6"
 +
  />
  
  
==== the top 3 of those cells ====
+
==== Intrusion at p, q, r ====
 
+
  
 
<hexboard size="6x14"
 
<hexboard size="6x14"
Line 131: Line 144:
 
   edges="bottom"
 
   edges="bottom"
 
   visible="area(f1,a6,n6,n4,l2,h1)"
 
   visible="area(f1,a6,n6,n4,l2,h1)"
   contents="R e2 2:d4 4:d3 6:g3 8:e4 B c3 1:d5 3:e3 5:c5 7:(f3 f2 g2) S d6 e5 e6"
+
   contents="R e2 d4 d3 B c3 d5 e3 c5 R 1:g3 B 2:(f3 f2 g2) R 3:e4 S d6 e5 e6"
 
   />
 
   />
  
Now Blue must play in one of the 3 shaded cells. ​ If Blue plays in the left 2 of those 3, then Red connects via [[Edge_template_IV2b|IV-2-b]]. ​ Otherwise, Red connects via [[Tom's move]].
+
Now Blue must play in one of the 3 shaded cells. ​If Blue plays in the left 2 of those 3, then Red connects via [[Edge_template_IV2b|IV-2-b]]. ​ Otherwise, Red connects via [[Tom's move]].
  
 
<hexboard size="6x14"
 
<hexboard size="6x14"
Line 140: Line 153:
 
   edges="bottom"
 
   edges="bottom"
 
   visible="area(f1,a6,n6,n4,l2,h1)"
 
   visible="area(f1,a6,n6,n4,l2,h1)"
   contents="R e2 2:d4 4:d3 6:g3 8:e4 10:e5 12:f5 14:i4 B c3 1:d5 3:e3 5:c5 7:(f3 f2 g2) 9:e6 11:d6 13:f6"
+
   contents="R e2 d4 d3 B c3 d5 e3 c5 R 1:g3 B 2:(f3 f2 g2) R 3:e4 5:e5 7:f5 9:i4 B 2:(f3 f2 g2) 4:e6 6:d6 8:f6"
 
   />
 
   />
  
 +
==== Intrusion at s ====
  
 +
<hexboard size="6x14"
 +
  coords="hide"
 +
  edges="bottom"
 +
  visible="area(f1,a6,n6,n4,l2,h1)"
 +
  contents="R e2 d4 d3 B c3 d5 e3 c5 R 1:g3 B 2:e4 R 3:f2"
 +
  />
  
==== ... 5. e4 ====
+
Red is connected by [[edge template IV1d]].
  
Yet to come ...
+
==== Intrusion at t ====
  
==== ... 5. f4 ====
+
<hexboard size="6x14"
 +
  coords="hide"
 +
  edges="bottom"
 +
  visible="area(f1,a6,n6,n4,l2,h1)"
 +
  contents="R e2 d4 d3 B c3 d5 e3 c5 R 1:g3 B 2:f4 R 3:e4 B 4:e5 R 5:h2"
 +
  />
  
Yet to come ...
+
Now Red is connected by [[Fifth_row_edge_templates#V-2-m|edge template V2m]]. If Blue plays 4 on the first row instead, Red connects by [[Tom's move]]:
 +
<hexboard size="6x14"
 +
  coords="hide"
 +
  edges="bottom"
 +
  visible="area(f1,a6,n6,n4,l2,h1)"
 +
  contents="R e2 d4 d3 B c3 d5 e3 c5 R 1:g3 B 2:f4 R 3:e4 B 4:e6 R 5:e5 B 6:d6 R 7:f5 B 8:f6 R 9:i4"
 +
  />
  
==== ... 5. g4 ====
+
==== Intrusion at u ====
  
Yet to come ...
+
<hexboard size="6x14"
 +
  coords="hide"
 +
  edges="bottom"
 +
  visible="area(f1,a6,n6,n4,l2,h1)"
 +
  contents="R e2 d4 d3 B c3 d5 e3 c5 R 1:g3 B 2:g4 R 3:f4 B 4:e6 R 5:f5 B 6:f6 R 7:i4"
 +
  />
 +
Red is connected by [[Tom's move]].
  
==== ... 5. e5 ====
+
==== Intrusion at v ====
 
+
Yet to come ...
+
 
+
==== ... 5. f5 ====
+
 
+
Yet to come ...
+
 
+
==== ... 5. g5 ====
+
 
+
Yet to come ...
+
 
+
==== ... 5. d6 ====
+
  
 
<hexboard size="6x14"
 
<hexboard size="6x14"
Line 175: Line 200:
 
   edges="bottom"
 
   edges="bottom"
 
   visible="area(f1,a6,n6,n4,l2,h1)"
 
   visible="area(f1,a6,n6,n4,l2,h1)"
   contents="E *:a1 E *:b1 E *:c1 E *:d1 R e1 E *:i1 E *:j1 E *:k1 E *:l1 E *:m1 E *:n1 E *:a2 E *:b2 E *:c2 E *:d2 R e2 E +:f2 E +:g2 E *:m2 E *:n2 E *:a3 E *:b3 E *:c3 E +:f3 R g3 E *:n3 E *:a4 E *:b4 R d4 E +:e4 R 2:f4 E *:a5 B c5 B d5 B 1:d6"
+
   contents="R e2 d4 d3 B c3 d5 e3 c5 R 1:g3 B 2:f5 R 3:f4 E *:e5 *:h4"
 
   />
 
   />
 +
Red is connected by [[double threat]].
 +
 +
==== Intrusion at w ====
  
The group with 2 is connected to the top in two non-overlapping ways (see area marked with +) and to the bottom with [[Edge_template_IV2b|IV-2-b]].
+
To do.
  
==== ... 5. e6 ====
+
==== Intrusion at x ====
  
 
Red can respond here:
 
Red can respond here:
Line 188: Line 216:
 
   edges="bottom"
 
   edges="bottom"
 
   visible="area(f1,a6,n6,n4,l2,h1)"
 
   visible="area(f1,a6,n6,n4,l2,h1)"
   contents="E *:a1 E *:b1 E *:c1 E *:d1 R e1 E *:i1 E *:j1 E *:k1 E *:l1 E *:m1 E *:n1 E *:a2 E *:b2 E *:c2 E *:d2 R e2 E *:m2 E *:n2 E *:a3 E *:b3 E *:c3 R g3 E *:n3 E *:a4 E *:b4 R d4 E *:a5 B c5 B d5 R 2:f5 B 1:e6"
+
   contents="R e2 d4 d3 B c3 d5 e3 c5 R 1:g3 R 3:f5 B 2:e6"
 
   />
 
   />
  
Line 376: Line 404:
 
</div>
 
</div>
  
==== ... 5. f6 ====
+
==== Intrusion at y ====
 
+
Red can start like this:
+
  
 
<hexboard size="6x14"
 
<hexboard size="6x14"
Line 384: Line 410:
 
   edges="bottom"
 
   edges="bottom"
 
   visible="area(f1,a6,n6,n4,l2,h1)"
 
   visible="area(f1,a6,n6,n4,l2,h1)"
   contents="E *:a1 E *:b1 E *:c1 E *:d1 R e1 E *:i1 E *:j1 E *:k1 E *:l1 E *:m1 E *:n1 E *:a2 E *:b2 E *:c2 E *:d2 R e2 E *:m2 E *:n2 E *:a3 E *:b3 E *:c3 R g3 E *:n3 E *:a4 E *:b4 R d4 E *:a5 B c5 B d5 R 2:e5 B 1:f6"
+
   contents="R e2 B e3 R d3 R 1:g3 R d4 B c5 B d5 B 2:f6 R 3:e5 E *:d6 *:e6 B 4:e4 R 5:f2"
 
   />
 
   />
 
+
Note that the hexes marked "*" are [[captured cell|captured]] by Red 3, so Blue 4 is forced. Then Red is connected by [[edge template IV2e]].
Red now has these threats:
+
  
<hexboard size="6x14"
+
==== Intrusion at z ====
  coords="hide"
+
  edges="bottom"
+
  visible="area(f1,a6,n6,n4,l2,h1)"
+
  contents="E *:a1 E *:b1 E *:c1 E *:d1 R e1 E *:i1 E *:j1 E *:k1 E *:l1 E *:m1 E *:n1 E *:a2 E *:b2 E *:c2 E *:d2 R e2 E *:m2 E *:n2 E *:a3 E *:b3 E *:c3 E +:d3 E +:e3 R g3 E *:n3 E *:a4 E *:b4 R d4 R 1:e4 E *:a5 B c5 B d5 R e5 E +:d6 E +:e6 B f6"
+
  />
+
 
+
and
+
 
+
<hexboard size="6x14"
+
  coords="hide"
+
  edges="bottom"
+
  visible="area(f1,a6,n6,n4,l2,h1)"
+
  contents="E *:a1 E *:b1 E *:c1 E *:d1 R e1 E *:i1 E *:j1 E *:k1 E *:l1 E *:m1 E *:n1 E *:a2 E *:b2 E *:c2 E *:d2 R e2 R 1:f2 E +:g2 E *:m2 E *:n2 E *:a3 E *:b3 E *:c3 E +:f3 R g3 E *:n3 E *:a4 E *:b4 R d4 E +:f4 E +:g4 E +:h4 E *:a5 B c5 B d5 R e5 E +:f5 E +:g5 E +:h5 E +:d6 E +:e6 B f6 E +:g6 E +:h6"
+
  />
+
 
+
using [[Edge_template_IV2e|IV-2-e]].
+
 
+
Blue must play in the overlap:
+
  
 
<hexboard size="6x14"
 
<hexboard size="6x14"
Line 413: Line 420:
 
   edges="bottom"
 
   edges="bottom"
 
   visible="area(f1,a6,n6,n4,l2,h1)"
 
   visible="area(f1,a6,n6,n4,l2,h1)"
   contents="E *:a1 E *:b1 E *:c1 E *:d1 R e1 E *:i1 E *:j1 E *:k1 E *:l1 E *:m1 E *:n1 E *:a2 E *:b2 E *:c2 E *:d2 R e2 E *:m2 E *:n2 E *:a3 E *:b3 E *:c3 R g3 E *:n3 E *:a4 E *:b4 R d4 E *:a5 B c5 B d5 R e5 E +:d6 E +:e6 B f6"
+
   contents="R e2 B e3 R d3 R 1:g3 R d4 B c5 B d5 B 2:g6 R 3:e5 E *:d6 *:e6 B 4:e4 R 5:f2"
 
   />
 
   />
 
+
Note that the hexes marked "*" are [[captured cell|captured]] by Red 3, so Blue 4 is forced. Then Red is connected by [[Fourth_row_edge_templates#IV-2-q|edge template IV2p]].
First move:
+
 
+
<hexboard size="6x14"
+
  coords="hide"
+
  edges="bottom"
+
  visible="area(f1,a6,n6,n4,l2,h1)"
+
  contents="E *:a1 E *:b1 E *:c1 E *:d1 R e1 E *:i1 E *:j1 E *:k1 E *:l1 E *:m1 E *:n1 E *:a2 E *:b2 E *:c2 E *:d2 R e2 R 4:f2 E *:m2 E *:n2 E *:a3 E *:b3 E *:c3 R g3 E *:n3 E *:a4 E *:b4 R d4 B 3:e4 B 5:f4 R 6:g4 E *:a5 B c5 B d5 R e5 B 7:f5 B 8:h5 B 1:d6 R 2:e6 B f6"
+
  />
+
 
+
You get the the defense against the other move by just swapping 1 and 2 in the diagram above.
+
 
+
==== ... 5. g6 ====
+
 
+
<hexboard size="6x14"
+
  coords="hide"
+
  edges="bottom"
+
  visible="area(f1,a6,n6,n4,l2,h1)"
+
  contents="E *:a1 E *:b1 E *:c1 E *:d1 R e1 E *:i1 E *:j1 E *:k1 E *:l1 E *:m1 E *:n1 E *:a2 E *:b2 E *:c2 E *:d2 R e2 E *:m2 E *:n2 E *:a3 E *:b3 E *:c3 R g3 E *:n3 E *:a4 E *:b4 R d4 R 2:f4 R 6:h4 E *:a5 B c5 B d5 B 5:f5 B 7:g5 R 8:i5 B 3:e6 R 4:f6 B 1:g6"
+
  />
+
 
+
Note that 2 is safely connected to the top, so 3 is forced.
+
  
 
</div>
 
</div>

Revision as of 23:46, 24 July 2022

Edge template V1b is a 5th row edge template with 1 stone.

The validity and minimality of this template has been checked by computer. The template was mentioned on 2016-05-19 by the user shalev in this Little Golem thread, but likely predates that post.


Defense against intrusions

Reduction

Red has 3 main threats. Using the ziggurat:

Using edge template III1b:

And using edge_template_IV1d:

For a blocking attempt, Blue must play in the overlap:

abc

Intrusion at a

If Blue intrudes at a, Red can start by forcing a 3rd or 2nd row ladder like this

21435

or like this:

214368579

Red's continuation will be discussed below.

Intrusion at b

If Blue intrudes at b, Red can start by forcing a 3rd row ladder like this:

43251

Red's continuation will be discussed below.

Intrusion at c

If Blue intrudes at c, Red can start by forcing a 2nd row ladder like this:

4325671

Red's continuation will be discussed below.

Continuation after 3rd row ladder

If Red achieved a 3rd row ladder after intrusions a or b as shown above, Red continues as follows.

1

Now Red is connected by Tom's move for 3rd and 5th row parallel ladders.

Continuation:

Now Red has two main threats. Via a ziggurat:

1

And via edge template IV2b:

1

Blue must play in the overlap:

pqr1stuvwxyz


Intrusion at p, q, r

22213

Now Blue must play in one of the 3 shaded cells. ​If Blue plays in the left 2 of those 3, then Red connects via IV-2-b. ​ Otherwise, Red connects via Tom's move.

22213957648

Intrusion at s

312

Red is connected by edge template IV1d.

Intrusion at t

51324

Now Red is connected by edge template V2m. If Blue plays 4 on the first row instead, Red connects by Tom's move:

132957648

Intrusion at u

1327546

Red is connected by Tom's move.

Intrusion at v

132

Red is connected by double threat.

Intrusion at w

To do.

Intrusion at x

Red can respond here:

132

Continuation:

Now Red has two threats:

1

and

1

Blue must play in the overlap:

fgh6


7. f2

12847653

7. g2

126543


7. f3

126452

6 is now connected to the left and to the bottom by Tom's move.

7. e4

2143

4 is again connected to the left and to the bottom by Tom's move.

7. f4

21

Blue must go on one of the 3 marked fields. However, d6 can't be any better than 35, so it's enough to look at e5 and g6. Let's have a look at g6 first:

4231

4 is now connected to the bottom and to the left in a similar way as in Tom's move. (Just the piece on g3 is connected to the left in a slightly different way.)

The other possible move was e5:

21

Red 2 is connected to the left by two non-overlapping ways and to the bottom by a 5th row template that has yet to be added to this wiki.

7. g4

216453

Once again 6 is now connected to the bottom and to the left in a similar way as in Tom's move.

7. e5

2413

And Tom's move at the end again.

7. f6

21

Red 2 is connected to the bottom and to at least one of the red pieces in the middle by Tom's move. Red now has three threats to connect both these pieces to the top:

1
1

and

1

Blue must play in the overlap:

First move:

123465

Second move:

2413

Intrusion at y

51432

Note that the hexes marked "*" are captured by Red 3, so Blue 4 is forced. Then Red is connected by edge template IV2e.

Intrusion at z

51432

Note that the hexes marked "*" are captured by Red 3, so Blue 4 is forced. Then Red is connected by edge template IV2p.

Continuation after 2nd row ladder

If Red achieved a 2nd row ladder after intrusions a or c above, Red continues as follows.

312

Now Red connects in essentially the same way as Tom's move.

Continuation:

Red has these threats:

13524
132
1

The overlap in which Blue must play is:

Four of these five possible moves can be analysed together. In the following diagram, assume Blue has played 1 in any one of the cells marked with +:

64532

After Red 2, that group is safely connected to them bottom, now matter which of the pluses Blue chose before.

That leaves only one Blue move to deal with:

76108495213

Note that Red 4 connects to the bottom with IV-2-b.