Difference between revisions of "Hex theory"
From HexWiki
(Copied/adapted page from http://hexwiki.tk) |
m (Copied/adapted page from http://hexwiki.tk) |
||
Line 1: | Line 1: | ||
− | Unlike many other games, it is possible to say certain things about [[Hex]], with absolute certainty. While, for example, nobody seriously believes that black has a winning strategy in [http://en.wikipedia.org/wiki/Chess chess], nobody has been able to prove that such a | + | Unlike many other games, it is possible to say certain things about [[Hex]], with absolute certainty. While, for example, nobody seriously believes that black has a winning strategy in [http://en.wikipedia.org/wiki/Chess chess], nobody has been able to prove that such a strategy doesn't exist. In Hex, on the other hand, a simple argument can show that the [[second player]] certainly does not have a winning strategy from the [[starting position]] (when the [[Swap rule|swap option]] is not used). Whether this makes Hex a better game is of course debatable, but many find this attribute charming. |
The most important properties of Hex are the following: | The most important properties of Hex are the following: |
Revision as of 13:00, 11 February 2005
Unlike many other games, it is possible to say certain things about Hex, with absolute certainty. While, for example, nobody seriously believes that black has a winning strategy in chess, nobody has been able to prove that such a strategy doesn't exist. In Hex, on the other hand, a simple argument can show that the second player certainly does not have a winning strategy from the starting position (when the swap option is not used). Whether this makes Hex a better game is of course debatable, but many find this attribute charming.
The most important properties of Hex are the following:
- The game can not end in a draw. (Proofs on Javhar's page)
- The first player has a winning strategy.
- When playing with the swap option, the second player has a winning strategy.