Difference between revisions of "Hex theory"

From HexWiki
Jump to: navigation, search
m (corrected an inner link)
m (corrected an inner link)
Line 1: Line 1:
Unlike many other games, it is possible to say certain things about [[Hex]], with absolute certainty. While, for example, nobody seriously believes that black has a winning strategy in [http://en.wikipedia.org/wiki/Chess chess], nobody has been able to prove that such a strategy doesn't exist. In Hex, on the other hand, a simple argument can show that the [[second player]] certainly does not have a winning strategy from the [[starting position]] (when the [[Swap rule|swap option]] is not used). Whether this makes Hex a better game is of course debatable, but many find this attribute charming.
+
Unlike many other games, it is possible to say certain things about [[Hex]], with absolute certainty. While, for example, nobody seriously believes that black has a winning strategy in [http://en.wikipedia.org/wiki/Chess chess], nobody has been able to prove that such a strategy doesn't exist. In Hex, on the other hand, a simple argument can show that the [[Blue (player)|second player]] certainly does not have a winning strategy from the [[starting position]] (when the [[Swap rule|swap option]] is not used). Whether this makes Hex a better game is of course debatable, but many find this attribute charming.
  
 
The most important properties of Hex are the following:
 
The most important properties of Hex are the following:

Revision as of 19:47, 27 November 2007

Unlike many other games, it is possible to say certain things about Hex, with absolute certainty. While, for example, nobody seriously believes that black has a winning strategy in chess, nobody has been able to prove that such a strategy doesn't exist. In Hex, on the other hand, a simple argument can show that the second player certainly does not have a winning strategy from the starting position (when the swap option is not used). Whether this makes Hex a better game is of course debatable, but many find this attribute charming.

The most important properties of Hex are the following:

See also

Open problems