Difference between revisions of "Edge template VI1a"

From HexWiki
Jump to: navigation, search
m (Third-row followup i4 and incursion at i6)
(moved contents)
Line 405: Line 405:
 
</hex>
 
</hex>
  
==== Elimination of irrelevant Blue moves ====
+
For more details, see [[Template VI1/Intrusion on the 4th row|this page]].
This gives Red several immediate threats:
+
From III1a:
+
<hex>
+
R7 C14 Q0
+
1:BBBBBBBBBRBBBBB
+
Sa2 Sb2 Sc2 Sd2 Se2 Sf2 Sg2 Sh2 Rj2 Sl2 Sm2 Sn2
+
Sa3 Sb3 Sc3 Sd3 Se3 Sf3 Sm3 Sn3
+
Sa4 Sb4 Sc4 Sd4 Sn4
+
Sa5 Sb5
+
Sa6
+
 
+
Bi4 Rh3
+
Rg5
+
Pg4 Ph4
+
Ph5
+
Pf6 Pg6 Ph6
+
Pe7 Pf7 Pg7 Ph7
+
</hex>
+
 
+
From III1a again:
+
<hex>
+
R7 C14 Q0
+
1:BBBBBBBBBRBBBBB
+
Sa2 Sb2 Sc2 Sd2 Se2 Sf2 Sg2 Sh2 Rj2 Sl2 Sm2 Sn2
+
Sa3 Sb3 Sc3 Sd3 Se3 Sf3 Sm3 Sn3
+
Sa4 Sb4 Sc4 Sd4 Sn4
+
Sa5 Sb5
+
Sa6
+
 
+
Bi4 Rh3
+
Rg5
+
Pg4 Ph4
+
Pf5
+
Pe6 Pf6 Pg6
+
Pd7 Pe7 Pf7 Pg7
+
</hex>
+
 
+
From III1b :
+
<hex>
+
R7 C14 Q0
+
1:BBBBBBBBBRBBBBB
+
Sa2 Sb2 Sc2 Sd2 Se2 Sf2 Sg2 Sh2 Rj2 Sl2 Sm2 Sn2
+
Sa3 Sb3 Sc3 Sd3 Se3 Sf3 Sm3 Sn3
+
Sa4 Sb4 Sc4 Sd4 Sn4
+
Sa5 Sb5
+
Sa6
+
 
+
Bi4 Rh3
+
Rg5
+
Pg4 Ph4
+
Pf5 Ph5
+
Pe6 Pf6 Pg6 Ph6
+
Pd7 Pe7 Pg7 Ph7
+
</hex>
+
 
+
From IV1a:
+
<hex>
+
R7 C14 Q0
+
1:BBBBBBBBBRBBBBB
+
Sa2 Sb2 Sc2 Sd2 Se2 Sf2 Sg2 Sh2 Rj2 Sl2 Sm2 Sn2
+
Sa3 Sb3 Sc3 Sd3 Se3 Sf3 Sm3 Sn3
+
Sa4 Sb4 Sc4 Sd4 Sn4
+
Sa5 Sb5
+
Sa6
+
 
+
Bi4 Rh3
+
Rg4
+
Pf4
+
Pd5 Pe5 Pf5 Pg5 Ph5
+
Pc6 Pd6 Pe6 Pf6 Pg6 Ph6
+
Pb7 Pc7 Pd7 Pe7 Pf7 Pg7 Ph7
+
</hex>
+
 
+
From IV1b:
+
<hex>
+
R7 C14 Q0
+
1:BBBBBBBBBRBBBBB
+
Sa2 Sb2 Sc2 Sd2 Se2 Sf2 Sg2 Sh2 Rj2 Sl2 Sm2 Sn2
+
Sa3 Sb3 Sc3 Sd3 Se3 Sf3 Sm3 Sn3
+
Sa4 Sb4 Sc4 Sd4 Sn4
+
Sa5 Sb5
+
Sa6
+
 
+
Bi4 Rh3
+
Rg4
+
Pf4 Ph4
+
Pd5 Pe5 Pf5 Pg5 Ph5 Pi5
+
Pc6 Pd6 Pe6    Pg6 Ph6 Pi6
+
Pb7 Pc7 Pd7 Pe7 Pf7 Pg7 Ph7 Pi7
+
</hex>
+
 
+
The intersection of all of these leaves:
+
<hex>
+
R7 C14 Q1
+
1:BBBBBBBBBRBBBBB
+
Sa2 Sb2 Sc2 Sd2 Se2 Sf2 Sg2 Sh2 Rj2 Sl2 Sm2 Sn2
+
Sa3 Sb3 Sc3 Sd3 Se3 Sf3 Sm3 Sn3
+
Sa4 Sb4 Sc4 Sd4 Sn4
+
Sa5 Sb5
+
Sa6
+
 
+
Bi4 Rh3
+
Pg4
+
  Pg5
+
  Pg6
+
Pe7 Pg7
+
</hex>
+
 
+
==== Specific defense ====
+
So we must deal with each of these responses.  (Which will not be too hard!)
+
 
+
===== Bg4 =====
+
<hex>
+
R7 C14 Q0
+
1:BBBBBBBBBRBBBBB
+
Sa2 Sb2 Sc2 Sd2 Se2 Sf2 Sg2 Sh2 Rj2 Sl2 Sm2 Sn2
+
Sa3 Sb3 Sc3 Sd3 Se3 Sf3 Sm3 Sn3
+
Sa4 Sb4 Sc4 Sd4 Sn4
+
Sa5 Sb5
+
Sa6
+
 
+
Bi4 Rh3
+
 
+
N:on Bg4 Rh4 Bg6 Rh5
+
</hex>
+
And now either
+
<hex>
+
R7 C14 Q0
+
1:BBBBBBBBBRBBBBB
+
Sa2 Sb2 Sc2 Sd2 Se2 Sf2 Sg2 Sh2 Rj2 Sl2 Sm2 Sn2
+
Sa3 Sb3 Sc3 Sd3 Se3 Sf3 Sm3 Sn3
+
Sa4 Sb4 Sc4 Sd4 Sn4
+
Sa5 Sb5
+
Sa6
+
 
+
Bi4 Rh3
+
 
+
Bg4 Rh4 Bg6 Rh5
+
N:on Bh6 Rj5
+
Pk3 Pi5
+
</hex>
+
 
+
or
+
 
+
<hex>
+
R7 C14 Q0
+
1:BBBBBBBBBRBBBBB
+
Sa2 Sb2 Sc2 Sd2 Se2 Sf2 Sg2 Sh2 Rj2 Sl2 Sm2 Sn2
+
Sa3 Sb3 Sc3 Sd3 Se3 Sf3 Sm3 Sn3
+
Sa4 Sb4 Sc4 Sd4 Sn4
+
Sa5 Sb5
+
Sa6
+
 
+
Bi4 Rh3
+
 
+
Bg4 Rh4 Bg6 Rh5
+
N:on Bh7 Rh6 Bg7 Rj6 Bi6 Rj5
+
Pk3 Pi5
+
</hex>
+
===== Bg5 =====
+
<hex>
+
R7 C14 Q1
+
1:BBBBBBBBBRBBBBB
+
Sa2 Sb2 Sc2 Sd2 Se2 Sf2 Sg2 Sh2 Rj2 Sl2 Sm2 Sn2
+
Sa3 Sb3 Sc3 Sd3 Se3 Sf3 Sm3 Sn3
+
Sa4 Sb4 Sc4 Sd4 Sn4
+
Sa5 Sb5
+
Sa6
+
 
+
Bi4 Rh3
+
 
+
N:on Bg5 Rf4
+
</hex>
+
Threatening:
+
<hex>
+
R7 C14 Q1
+
1:BBBBBBBBBRBBBBB
+
Sa2 Sb2 Sc2 Sd2 Se2 Sf2 Sg2 Sh2 Rj2 Sl2 Sm2 Sn2
+
Sa3 Sb3 Sc3 Sd3 Se3 Sf3 Sm3 Sn3
+
Sa4 Sb4 Sc4 Sd4 Sn4
+
Sa5 Sb5
+
Sa6
+
 
+
Bi4 Rh3
+
Bg5 Rf4
+
            Pe4
+
      Pc5 R4d5 Pe5
+
  Pb6 Pc6 Pd6
+
Pa7 Pb7 Pc7 Pd7
+
</hex>
+
<hex>
+
R7 C14 Q1
+
1:BBBBBBBBBRBBBBB
+
Sa2 Sb2 Sc2 Sd2 Se2 Sf2 Sg2 Sh2 Rj2 Sl2 Sm2 Sn2
+
Sa3 Sb3 Sc3 Sd3 Se3 Sf3 Sm3 Sn3
+
Sa4 Sb4 Sc4 Sd4 Sn4
+
Sa5 Sb5
+
Sa6
+
 
+
Bi4 Rh3
+
Bg5 Rf4
+
      Pe5 Pf5
+
      R4e6
+
    Pd7 Pe7
+
</hex>
+
 
+
<hex>
+
R7 C14 Q1
+
1:BBBBBBBBBRBBBBB
+
Sa2 Sb2 Sc2 Sd2 Se2 Sf2 Sg2 Sh2 Rj2 Sl2 Sm2 Sn2
+
Sa3 Sb3 Sc3 Sd3 Se3 Sf3 Sm3 Sn3
+
Sa4 Sb4 Sc4 Sd4 Sn4
+
Sa5 Sb5
+
Sa6
+
 
+
Bi4 Rh3
+
Bg5 Rf4
+
      Pd5 R4e5 Pf5
+
  Pc6 Pd6 Pe6 Pf6
+
Pb7 Pc7    Pe7 Pf7
+
</hex>
+
So the only hope for Blue lies in the intersection of the threats, Be5, but it is unsufficient:
+
 
+
<hex>
+
R7 C14 Q1
+
1:BBBBBBBBBRBBBBB
+
Sa2 Sb2 Sc2 Sd2 Se2 Sf2 Sg2 Sh2 Rj2 Sl2 Sm2 Sn2
+
Sa3 Sb3 Sc3 Sd3 Se3 Sf3 Sm3 Sn3
+
Sa4 Sb4 Sc4 Sd4 Sn4
+
Sa5 Sb5
+
Sa6
+
 
+
Bi4 Rh3
+
Bg5 Rf4
+
N:on Be5 Rf5 Be7 Rf6 Bf7 Rg6 Bg7 Rj5
+
Pk3 Pi5
+
</hex>
+
===== Bg6 =====
+
<hex>
+
R7 C14 Q0
+
1:BBBBBBBBBRBBBBB
+
Sa2 Sb2 Sc2 Sd2 Se2 Sf2 Sg2 Sh2 Rj2 Sl2 Sm2 Sn2
+
Sa3 Sb3 Sc3 Sd3 Se3 Sf3 Sm3 Sn3
+
Sa4 Sb4 Sc4 Sd4 Sn4
+
Sa5 Sb5
+
Sa6
+
 
+
Bi4 Rh3
+
 
+
N:on Bg6 Rg5 Bf6 Rh5
+
Pe7
+
</hex>
+
 
+
3 could be played at + with the same effect; in any case
+
now either
+
 
+
<hex>
+
R7 C14 Q0
+
1:BBBBBBBBBRBBBBB
+
Sa2 Sb2 Sc2 Sd2 Se2 Sf2 Sg2 Sh2 Rj2 Sl2 Sm2 Sn2
+
Sa3 Sb3 Sc3 Sd3 Se3 Sf3 Sm3 Sn3
+
Sa4 Sb4 Sc4 Sd4 Sn4
+
Sa5 Sb5
+
Sa6
+
 
+
Bi4 Rh3
+
 
+
Bg6 Rg5 Bf6 Rh5
+
N:on Bh6 Rj5
+
Pi5 Pk3
+
</hex>
+
 
+
or
+
 
+
<hex>
+
R7 C14 Q0
+
1:BBBBBBBBBRBBBBB
+
Sa2 Sb2 Sc2 Sd2 Se2 Sf2 Sg2 Sh2 Rj2 Sl2 Sm2 Sn2
+
Sa3 Sb3 Sc3 Sd3 Se3 Sf3 Sm3 Sn3
+
Sa4 Sb4 Sc4 Sd4 Sn4
+
Sa5 Sb5
+
Sa6
+
 
+
Bi4 Rh3
+
 
+
Bg6 Rg5 Bf6 Rh5
+
N:on Bh7 Rh6 Bg7 Rj6 Bi6 Rj5
+
Pk3 Pi5
+
</hex>
+
 
+
===== Be7 =====
+
Either this
+
<hex>
+
R7 C14 Q0
+
1:BBBBBBBBBRBBBBB
+
Sa2 Sb2 Sc2 Sd2 Se2 Sf2 Sg2 Sh2 Rj2 Sl2 Sm2 Sn2
+
Sa3 Sb3 Sc3 Sd3 Se3 Sf3 Sm3 Sn3
+
Sa4 Sb4 Sc4 Sd4 Sn4
+
Sa5 Sb5
+
Sa6
+
 
+
Bi4 Rh3
+
 
+
N:on Be7 Rg5 Bg6 Rh5 Bh6 Rj5
+
Pi5 Pk3
+
 
+
</hex>
+
 
+
or a minor variation
+
 
+
<hex>
+
R7 C14 Q0
+
1:BBBBBBBBBRBBBBB
+
Sa2 Sb2 Sc2 Sd2 Se2 Sf2 Sg2 Sh2 Rj2 Sl2 Sm2 Sn2
+
Sa3 Sb3 Sc3 Sd3 Se3 Sf3 Sm3 Sn3
+
Sa4 Sb4 Sc4 Sd4 Sn4
+
Sa5 Sb5
+
Sa6
+
 
+
Bi4 Rh3
+
 
+
N:on Be7 Rg5 Bg6 Rh5 Bh7 Rh6 Bg7 Rj6 Bi6 Rj5
+
Pi5 Pk3
+
 
+
</hex>
+
 
+
===== Bg7 =====
+
 
+
<hex>
+
R7 C14 Q0
+
1:BBBBBBBBBRBBBBB
+
Sa2 Sb2 Sc2 Sd2 Se2 Sf2 Sg2 Sh2 Rj2 Sl2 Sm2 Sn2
+
Sa3 Sb3 Sc3 Sd3 Se3 Sf3 Sm3 Sn3
+
Sa4 Sb4 Sc4 Sd4 Sn4
+
Sa5 Sb5
+
Sa6
+
 
+
Bi4 Rh3
+
 
+
N:on Bg7 Rg5 Bf6 Rh6 Bh7 Rj6 Bi6 Rj5
+
Pi5 Pk3
+
 
+
</hex>
+
 
+
 
===The remaining intrusion on the fifth row===
 
===The remaining intrusion on the fifth row===
 
<hex>
 
<hex>

Revision as of 21:51, 1 March 2009

This template is the first one stone 6th row template for which a proof has been handwritten.

Elimination of irrelevant Blue moves

Red has a couple of direct threats to connect, using smaller templates. Blue must play in the carrier of these threats in order to counter them. To prevent Red from connecting Blue must play in the intersection of Red's threats carriers.

edge template IV1a

edge template IV1b

Using the parallel ladder trick

6 moves can furthermore be discarded thanks to the Parallel ladder trick. Of course, symmetry will cut our work in half!

We can dispose of 3 moves on the left (and, using mirror symmetry, the corresponding 3 moves on the right), as follows:

132546

At this point, we can use the Parallel ladder trick as follows:

7561324

Remaining possibilities for Blue

Blue's first move must be one of the following:

Specific defense

For the moves that intersect all the carriers, Red has to find specific answers. Let's deal with the remaining intrusions!

One remaining intrusion on the first row (stub)

Details to follow

The other remaining intrusion on the first row (stub)

Details to follow

The remaining intrusion on the second row (stub)

The remaining intrusion on the third row (stub)

Red should go here:

1

The Red 1 hex is connected to the bottom, and threatens to connect to the top through either one of the "+" hexes. Thus these are the only important incursions. An incursion to the right of the number 1 hex is important only in connection with the two indicated here, and will be seen in the treatement below transposed into the sequel.

Third-row followup: i4

321

Red threatens to play at "+" points above, with these two templates:


Edge template IV1a

We need only consider the intersection of these two templates

Third-row followup i4 and incursion at k4
21
Third-row followup i4 and incursion at j5
214635
Third-row followup i4 and incursion at i6
21
Third-row followup i4 and incursion at j6
21
Third-row followup i4 and incursion at h7
435621
Third-row followup i4 and incursion at i7
21

Third-row followup: j3 (stub)

21

The remaining intrusion on the fourth row

Red should move here (or the equivalent mirror-image move at "+"):

For more details, see this page.

The remaining intrusion on the fifth row

First establish a double ladder on the right.

17382546

Then use Tom's move:

53142